Гидромеханическая трансмиссия принцип работы

Содержание

Гидромеханические коробки передач

Гидромеханическая трансмиссия принцип работы

Основным неудобством при использовании механических ступенчатых коробок передач является то, что водителю для переключения передач постоянно приходится нажимать на педаль сцепления и перемещать рычаг переключения передач. Это требует от него затрат значительных физических сил, особенно в условиях городского движения или при управлении автомобилем, работающим с частыми остановками.

Для устранения таких неудобств и облегчения работы водителя на легковых, грузовых автомобилях и автобусах все более широкое применение получают гидромеханические коробки передач. Они выполняют одновременно функции сцепления и коробки передач с автоматическим или полуавтоматическим переключением передач.

При гидромеханической коробке передач управление движением автомобиля осуществляется педалью подачи топлива и при необходимости тормозной педалью.

Гидромеханическая коробка передач состоит из гидротрансформатора и механической коробки передач. При этом механическая коробка передач может быть двух-, трех- или многовальной, а также планетарной.

Гидромеханические коробки с вальными механическими коробками передач применяются главным образом на грузовых автомобилях и автобусах. Для переключения передач в таких коробках используются многодисковые муфты (фрикционы), работающие в масле, а иногда – для включения низшей передачи и заднего хода – зубчатая муфта. Переключение передач фрикционами происходит без снижения скорости вращения коленчатого вала двигателя, т.е. бесступенчато – без разрыва передаваемых мощности и крутящего момента.

Гидромеханические коробки с планетарными механическими коробками передач получили наибольшее распространение и применяются на легковых, грузовых автомобилях и в автобусах.

Их преимущества: компактность конструкции, меньшие металлоемкость и шумность, больший срок службы.

К недостаткам относятся сложность конструкции, высокая стоимость, пониженный КПД.

Переключение передач в этих коробках производится при помощи фрикционных муфт и ленточных тормозных механизмов. При этом при включении одной передачи часть фрикционных муфт и ленточных тормозных механизмов пробуксовывает, что также снижает их КПД.

Гидротрансформатор

Гидротрансформатор (рисунок 1) представляет собой гидравлический механизм, который размещен между двигателем и механической коробкой передач. Он состоит из трех колес с лопатками – насосного (ведущего), турбинного (ведомого) и реактора.

Насосное колесо 3 закреплено на маховике 1 двигателя и образует корпус гидротрансформатора, внутри которого размещены турбинное колесо 2, соединенное с первичным валом 5 коробки передач, и реактор 4, установленный на роликовой муфте 6 свободного хода.

Внутренняя полость гидротрансформатора на 3/4 своего объема заполнена специальным маслом малой вязкости.

Рисунок 1 – Гидротрансформатор

а – общий вид; б – схема; 1 – маховик; 2 – турбинное колесо; 3 – насосное колесо; 4 – реактор; 5 – вал; 6 – муфта

При работающем двигателе насосное колесо вращается вместе с маховиком двигателя. Масло под действием центробежной силы поступает к наружной части насосного колеса, воздействует на лопатки турбинного колеса и приводит его во вращение. Из турбинного колеса масло поступает в реактор, который обеспечивает плавный и безударный вход жидкости в насосное колесо и существенное увеличение крутящего момента. Таким образом, масло циркулирует по замкнутому кругу, обеспечивая передачу крутящего момента в гидротрансформаторе.

Характерной особенностью гидротрансформатора является увеличение крутящего момента при его передаче от двигателя к первичному валу коробки передач. Наибольшее увеличение крутящего момента на турбинном колесе гидротрансформатора получается при трогании автомобиля с места. В этом случае реактор неподвижен, так как заторможен муфтой свободного хода.

По мере разгона автомобиля увеличиваются скорости вращения насосного и турбинного колес. При этом муфта свободного хода расклинивается, и реактор начинает вращаться с увеличивающейся скоростью, оказывая все меньшее влияние на передаваемый крутящий момент. После достижения реактором максимальной скорости вращения гидротрансформатор перестает изменять крутящий момент и переходит на режим работы гидромуфты.

Таким образом происходит плавный разгон автомобиля и бесступенчатое изменение крутящего момента.

Гидротрансформатор автоматически устанавливает необходимое передаточное число между коленчатым валом двигателя и ведущими колесами автомобиля. Это обеспечивается следующим образом: с уменьшением скорости вращения ведущих колес автомобиля при увеличении сопротивления движению возрастает динамический напор жидкости от насоса на турбину, что приводит к росту крутящего момента на турбине и, следовательно, на ведущих колесах автомобиля.

Планетарная коробка передач

Планетарная коробка передач включает в себя планетарные механизмы. В простейшем планетарном механизме (рисунок 2) солнечная шестерня 6, закрепленная на ведущем валу 1, находится в зацеплении с шестернями-сателлитами 3, свободно установленными на своих осях. Оси сателлитов закреплены на водиле 4, жестко соединенном с ведомым валом 5, а сами сателлиты находятся в зацеплении с коронной шестерней 2, имеющей внутренние зубья.

Рисунок 2 – Планетарный механизм

1 – ведущий вал; 2 – коронная шестерня; 3 – сателлиты; 4 – водило; 5 – ведомый вал; 6 – солнечная шестерня; 7 – тормоз

Передача крутящего момента с ведущего вала 1 на ведомый вал 5 возможна только при заторможенной коронной шестерне 2 при помощи ленточного тормоза 7. В этом случае при вращении шестерни 6 сателлиты 3, перекатываясь по зубьям неподвижной шестерни 2, начнут вращаться вокруг своих осей и одновременно через водило 4 будут вращать ведомый вал 5. При растормаживании шестерни 2 сателлиты 3, свободно перекатываясь по шестерне 6, будут вращать шестерню 2, а вал 5 будет оставаться неподвижным.

На рисунке 3 приведена схема гидромеханической коробки передач, которая состоит из гидротрансформатора, трехвальной двухступенчатой механической коробки передач и системы управления. Наличие двухступенчатой механической коробки передач увеличивает диапазон регулирования крутящего момента.

Рисунок 3 – Схема гидромеханической коробки передач

1, 6, 7, 9, 10, 11, 13 – шестерни; 2, 3, 17 – фрикционы; 4 – муфта; 5, 12, 19 – ведомый, промежуточный и ведущий валы; 8 – регулятор; 14, 15 – насосы; 16 – коленчатый вал; 18 – гидротрансформатор

Гидромеханическая коробка передач включает ведущий 19, ведомый 5 и промежуточный 12 валы с шестернями, многодисковые фрикционные сцепления 2, 3, 17 (фрикционы) и зубчатую муфту 4 с приводом. К системе управления относятся передний 15 и задний 14 гидронасосы и центробежный регулятор 8, который воздействует на фрикционы 2, 3, 17, обеспечивающие переключение передач.

В нейтральном положении все фрикционы выключены, и при работающем двигателе крутящий момент на вторичный вал 5 не передается. На I (понижающей) передаче системой управления автоматически включается фрикцион 2.

При этом ведущая шестерня 1, свободно установленная на ведущем валу 19 коробки передач, блокируется валом, а зубчатая муфта 4 устанавливается вручную в положение переднего хода с помощью дистанционной системы управления.

Крутящий момент на I передаче от гидротрансформатора передается через фрикцион 2, шестерни 1, 13, 11, 10 и зубчатую муфту 4 на ведомый вал 5 коробки передач.

При разгоне на I передаче, когда гидротрансформатор автоматически осуществляет заданный диапазон регулирования крутящего момента, скорость возрастает до оптимального значения для переключения на II передачу. В этом случае центробежный регулятор 8 дает сигнал на включение фрикциона 3 и отключение фрикциона 2.

Читайте также  Принцип работы тракторного генератора

Автоматическая система управления обеспечивает включение II (прямой) передачи, при этом крутящий момент от первичного вала 19 коробки передач передается через фрикцион 3 непосредственно на вторичный вал, и скорость автомобиля возрастает до значения, определяемого диапазоном регулирования гидротрансформатором.

Гидромеханическая коробка передач на автомобилях

На рисунке 4 представлена двухступенчатая гидромеханическая коробка передач легкового автомобиля. Она состоит из гидротрансформатора 1, механической планетарной коробки передач с многодисковым фрикционом 3 и двумя ленточными тормозными механизмами 2 и 4 и гидравлической системы управления с кнопочным переключением передач. Кнопки соответственно означают: нейтральное положение, задний ход, I передача и движение с автоматическим переключением передач. В двухступенчатой механической коробке передач имеются два одинаковых планетарных механизма 5 и 6.

Рисунок 4 – Гидромеханическая коробка передач легкового автомобиля

1 – гидротрансформатор; 2, 4 – тормозные механизмы; 3 – фрикцион; 5, 6 – планетарные механизмы

В нейтральном положении фрикцион 3, а также тормозные механизмы 2 и 4 выключены. Трогание автомобиля с места происходит при включенной I передаче. В этом случае масло под давлением поступает в цилиндр тормозного механизма 2, лента которого затягивается, и солнечная шестерня планетарного механизма 6 останавливается.

Если включена кнопка «Движение», то при разгоне автомобиля происходит автоматическое переключение на II передачу, что обеспечивается одновременным выключением тормозного механизма 2 и включением фрикциона 3. В этом случае планетарные механизмы 5 и 6 блокируются и вращаются как одно целое.

Для движение автомобиля задним ходом включается только тормозной механизм 4.

Другие статьи по коробкам передач

Источник: https://carspec.info/gidromehanicheskie-korobki-peredach

Гидромеханическая коробка передач что это такое: принцип действия видео

Гидромеханическая трансмиссия принцип работы

Одним из элементов системы управления автомобилем является гидромеханическая трансмиссия. Благодаря ей водитель может переключать передачи плавно и без рывков. Гидромеханическая коробка передач — что это такое? Давайте разберемся.

Гидромеханическая коробка передач

Роль АКПП с гидромеханическим управлением

Для автомобиля и подобного ему транспортного средства трансмиссией является узел, который передает от двигателей к колесам крутящий момент. Так это выглядит в автомобилях со сцеплением, но их постепенно вытесняют с рынка АКПП. «Автоматы» сегодня ставят все чаще. В них не предусмотрено сцепления, а передачи переключаются автоматически. Гидромеханика помогает облегчить задачу смены передач во время движения. В классических коробках при управлении автомобилем выполняются следующие процессы:

  • отключение трансмиссии от двигателя в момент смены передач;
  • при изменении дорожных условий изменение величины крутящего момента.

Корпус гидротрансформатора вращается вместе с насосным колесом. Турбина с корпусом не связана (за исключением периода блокировки ГТ) – она соединена с валом коробки. Реактор при этом закреплен через обгонную муфту – она не дает ему проворачиваться под напором потока, когда разница в скорости вращения насосного и турбинного колес велика, но позволяет вращаться вместе с ними в одном направлении, когда автомобиль движется с постоянной скоростью и проскальзывание ГТ минимально. Так удается поднять КПД коробки.

Для выполнения этих действий и необходима гидромеханическая АКПП. Она одновременно выполняет функции сцепления и трансмиссии. Эту коробку специально придумали для использования в городских условиях, где постоянно выжимать сцепление может быть проблематично из-за частых остановок в пробках. Управляется автомобиль с гидромеханикой при помощи педалей тормоза и газа.

Разновидности гидромеханики

В состав этой трансмиссии обязательно входит гидротрансформатор, составляющие системы управления и механическая коробка. Она может быть одной из нескольких систем:

  • многовальной;
  • двухвальной;
  • трехвальной;
  • планетарной.

Последняя разновидность коробки наиболее распространена. Она часто устанавливается на легковые автомобили, так как не имеет высокой металлоемкости. Она отличается меньшим шумом при работе, высоким сроком службы и компактностью.

Вальные механизмы можно встретить на грузовиках и автобусах. В них для переключения передач предусмотрены многодисковые муфты, которые помещены в масло. Первая передача и задний ход включаются при помощи зубчатой муфты. Благодаря особому устройству вальных коробок переключение скоростей происходит за счет работы коленчатого вала. Скорость движения при этом не снимается, крутящий момент и мощность не разрываются.

Удаление царапин на кузове автомобиля без покраски.

НЕ ТРАТЬТЕ ДЕНЬГИ НА ПЕРЕКРАСКУ!
Теперь Вы сами сможете всего за 5 секунд убрать любую царапину с кузова вашего автомобиля.

Читать далее >>

Основное назначение АКПП

Функции гидротрансформатора

Гидротрансформатор выполняет функции сцепления в современных АКПП. Благодаря этому узлу автомобиль двигается с места плавно, без рывков. Динамические нагрузки при этом снижаются, что помогает эксплуатировать двигатель в щадящем режиме, повышая его долговечность. При применении гидротрансформатора части трансмиссии служат гораздо дольше. Водитель из-за снижения количества передач утомляется меньше. Гидротрансформаторы рекомендуется применять на внедорожниках, так как с их помощью можно увеличить проходимость автомобиля в тяжелых условиях – по снегу или песку.

Важно! В России также стоит выбирать трансмиссии с этим узлом, так как в зимнее время специальная техника часто не успевает прочищать дороги. Благодаря гидротрансформатору создается устойчивая сила тяги с небольшой скоростью вращения ведущих колес, что повышает их сцепление с дорожным покрытием.

Гидротрансформатор

Устройство гидротрансформатора

Размещают гидротрансформатор между двигателем и механической частью коробки. Он представляет собой соединенные между собой диски с лопастями. Первым идет насосное колесо, которое является ведущим. Оно связывает двигатель и трансформатор. Турбинное является ведомым, оно контактирует с первичным валом. За усиление крутящего момента отвечает реакторное. Турбины практически утопают в масле (погружены в него на три четверти).

Их прикрывает корпус, защищающий от попадания в масло посторонних частиц. Во время работы турбины к насосному диску направляется усилие вращающего момента двигателя. Одновременно на турбинный диск направляется под давлением поток масла. Его раскручивает реакторное колесо, располагающееся в центральной части. Возникшее усилие передается на вал КПП.

Работает гидротрансформатор за счет особой циркуляции масла, которое попадает в него с внешней части насосного диска, затем движется на турбинное колесо и возвращается через центральную часть этого узла. Завершается цикл циркуляции масла на насосном диске.Замена крутящего момента в гидротрансформаторе происходит автоматически по мере возрастания нагрузки двигателя.

Этот узел отправляет на коробку силу крутящего момента, где при помощи фрикционов происходит включение передач. Нужное передаточное число определяется трансформатором автоматически, в зависимости от его значения изменяется напор циркулирующего масла.

Гидротрансформатор акпп в разрезе

Планетарный механизм

В большинстве современных АКПП гидротрансформатор действует в паре с планетарной системой. Она занимается передачей крутящего момента к фрикционным муфтам. В самом простом варианте усилие направляется на центральную шестерню (солнечную). Два дополнительных сателлита (вспомогательные шестерни) находятся в постоянной сцепке с центральной шестерней благодаря нанесенным на эти элементы зубчикам. Сателлиты не фиксируются, а свободно вращаются вокруг своих осей.

Механизм шестеренок находится внутри коронного колеса, которое в зависимости от включенной передачи фиксируется или приходит в движение. В момент фиксации коронной шестерни начинает двигаться ведомый вал (на него передается усилие). В противном случае сателлиты передают момент на коронную шестерню, оставляя ведомый вал в неподвижном состоянии. Для переключения передач в планетарные АКПП устанавливаются фрикционные муфты. Каждая из них выглядит как несколько дисков, представляющих собой тонкие пластины из гладкого металла.

Каждая пластинка покрыта специальным фрикционным составом, предотвращающим ее износ. На части их можно найти шлицы. Между муфтами расположены прокладки. Прижимаются друг к другу они при помощи гидравлического поршня, функционирующего при подаче рабочей жидкости. При возрастании в нем давления фрикционы плотно смыкаются, становясь почти единым целым. После падения давления жидкости в гидравлическом поршне фрикционные диски возвращаются на место с помощью пружины. Работа фрикционов тесно связана с функционированием тормозных и планетарных механизмов.

Читайте также  Принцип работы гидросистемы трактора

На эти моменты передаются команды системы управления КПП и крутящий момент двигателя. Без их участия не производится торможение двигателем и запуск на буксире. Механический узел действует слаженно и четко.

планетарная система

Важно! В нейтральном положении выключаются фрикционы и тормозные механизмы. При разгоне и переключении передач фрикционы начинают действовать, а планетарные системы вращаются синхронно.

Электронная часть гидромеханической АКПП

Электронное управление необходимо для точности переключения передач в современных АКПП. Сейчас практически нельзя встретить трансмиссии, работа которых бы не поддерживалась электронными комплектующими. Они отвечают за:

  • Функционирование АКПП. В гидромеханике эта система состоит из регуляторов давления и насосов.
  • Сбор информации о действующей программе управления.
  • Выработку импульсов управления.
  • Исполнение команд при переключении передач.
  • За защиту двигателя и трансмиссии в случае опасной ситуации.
  • За ручное управление, за все операции отвечает блок, а управление происходит за счет рычага.

Электронная часть гидромеханической АКПП

Сильные и слабые стороны гидромеханики

Гидромеханическая коробка представляет собой последовательное соединение трансформатора, планетарного узла с фрикционами гидравлической системы управления. Ее основное достоинство – отсутствие необходимости водителю переключать передачи вручную.

Электроника делает это точно, благодаря чему отсутствует дискомфорт при движении, а двигатель не подвергается перегрузкам. Их отсутствие помогает сохранить его в целости на долгое время.

При начале движения передача мощности также происходит без прерывания и рывков, что делает гидромеханику более совершенной, превосходящей по своим характеристикам механические коробки передач. Не зря их используют не только в автомобилестроении, но и устанавливают на танки (в Америке и Германии).

Важно! Если вы выбираете автомобиль, на котором преимущественно будете двигаться по городу, то стоит выбирать именно гидромеханическую АКПП. С ее помощью у вас не возникнет неудобств при остановках в пробках или на светофорах.

Слабой частью такой АКПП является гидротрансформатор

Недостатком такого механизма является его высокая стоимость и техническая сложность. При переключении передач можно заметить потерю производительности за счет пробуксовки фрикционов и тормозных лент. Слабой частью такой АКПП является и гидротрансформатор, из-за которого теряется крутящий момент.

Несмотря на явные преимущества эффективность гидромеханики по результатам замеров составляет 86%, тогда как у обычной коробки она достигает 98%. Еще один недостаток – необходимость устанавливать системы подпитки охлаждения гидроагрегата. Они занимают место под капотом, из-за чего моторно-трансмиссионный отсек имеет большие габариты.

Также автомобили с установленной гидромеханикой нельзя завести путем толкания или перемещения его на тросе. Для этой разновидности коробки, как и во всех автоматах, характерно отсутствие возможности регулировать потребление топлива. Описанный вариант гидромеханической АКПП является одним из самых примитивных.

Сегодня разрабатываются более совершенные трансмиссии, которые устанавливают на легковые автомобили, выпущенные в последние годы. Гидромеханикой рекомендуется пользоваться тем, кто недавно сел за руль. Для новичка она незаменима тем, что самостоятельно переключать передачи нет необходимости.

Источник: https://akppgid.ru/vse-ob-akpp/gidromexanicheskaya-korobka-peredach.html

Устройство и принцип работы гидромеханики (АКПП)

Гидромеханическая трансмиссия принцип работы

Автоматическая коробка передач (АКПП) представляет собой автономный элемент конструкции транспортного средства, функциональное предназначение которого заключается в изменении крутящего момента двигателя путем регулировки передаточных чисел. В современном мире к АКПП относят все типы коробок, кроме механики – вариаторы, роботизированные преселективы и гидромеханику. Однако на практике под термином АКПП чаще всего подразумевают именно гидромеханику, принцип действия которой мы и рассмотрим в данной статье.

Устройство АКПП: из чего состоит автоматическая коробка передач?

Устройство гидромеханикиПринцип работы гидротрансформатора

Гидромеханическая коробка передач является сложно конструкционным элементом трансмиссии автомобиля. Устройство автоматической коробки включает в себя:

  • Гидротрансформатор – механизм, за счет которого осуществляется возможность переключения передач. Принцип действия гидротрансформатора заключается в преобразовании крутящего момента через рабочую жидкость АКПП (трансмиссионное масло);
  • Планетарный механизм – преобразующий редуктор, который работает в связке с ленточным тормозом, обгонной муфтой и планетарными рядами. Планетарный ряд представляет собой основной узел автоматической коробки передач. Также встречаются АКПП вальном конструкции, где планетарный ряд заменен 2 или 3 валами;
  • Блок управления гидромеханикой или гидроблок – комплекс механизмов, функциональное предназначение которых заключается в управлении планетарным редуктором. Гидроблок – гидравлическая клапанная плита, включающая клапаны, соленоиды, АКБ и соединяющие фрикционные каналы. Блок управления АКПП может быть, как механическим, так и электронным;
  • Ленточный тормоз – необходим для кратковременного блокирования планетарного ряда гидромеханики. Наличие тормозной ленты в АКПП позволяет сглаживать переключение передач минимизировав при этом толчки и пинки коробки;
  • Масляной насос – важный конструкционный узел, поддерживающий давление рабочей жидкости в гидротрансформаторе;
  • Обгонная муфта – фрикционный элемент, уравновешивающий крутящий момент от ведомого вала к ведущему. Обгонная муфта позволяет предотвратить перегруз планетарного ряда и вероятность микро проскальзываний;
  • Фрикционные муфты – устройство передачи вращательного движения путем силы трения и скольжения. Данный узел позволяет синхронизировать валы планетарного ряда на больших оборотах без потери ресурса эксплуатации.

Дополнительно требуется отметить также рабочую жидкость или трансмиссионное масло. Именно от качества и температуры рабочей жидкости в гидромеханике зависят плавность переключения передач и ресурс эксплуатации коробки. В некоторых АКПП производители устанавливают табличку с регламентом и интенсивностью обслуживания, на других – говорят о не обслуживаемости системы. Однако стоит помнить, что на практике не обслуживаемых коробок не существует и чем раньше будет заменено масло в АКПП, тем дольше прослужит ее механизм.

Принцип действия АКПП: как работает гидромеханика?

Принцип работы гидромеханической коробки передач немного сложнее стандартной механика. Изучить детально принцип работы АКПП с гидротрансформатором можно на видео ниже:

Обратите внимание! Также существует АКПП с гидростатической компоновкой оборудования, принцип работы которой немного отличается от гидромеханики. Узнать особенности строения, а также все преимущества и недостатки гидростатической АКПП можно в другой статье FIXCAR.ONLINE.

Чем хороша гидромеханика: плюсы и минусы АКПП

Как и любой механизм, гидромеханика имеет свои плюсы и минусы. К недостаткам гидромеханической коробки передач требуется отнести:

  • Сложность конструкции – при верном обслуживании АКПП способны отхаживать больше механики, однако важно найти сертифицированное СТО. Ввиду наличия сложных механизмов и массы электроники обслуживать АКПП желательно только у официального дилера;
  • Высокая стоимость АКПП – сложность производства «автомата» для авто увеличивает и стоимость самого транспортного средства. Разница между идентичной моделью автомобиля с механикой и гидромеханикой может достигать до 200 000 рублей;
  • Трудность в ремонте – замена неисправных элементов в АКПП требует наличия специализированного оборудования. К тому же ввиду конструкционной сложности для замены деталей часто необходимо разбирать всю коробку;
  • Повышенный расход топлива – в сравнении с вариатором и механикой, АКПП при той же динамики силового агрегата будет расходовать немного больше топлива.

Среди преимуществ гидромеханической коробки передач требуется выделить следующие факторы:

  • Удобство эксплуатации – в городских условиях автоматическая коробка передач выигрышней механики. Полноценно потенциал гидроавтомата раскрывается в пробках и на светофорах – в большом городе АКПП существенно упрощает жизнь водителю;
  • Высокий ресурс – при бережной эксплуатации гидромеханику требуется реже обслуживать, чем другие типы коробок передач. К тому же по соотношению стоимости обслуживания и пройденного километража АКПП дешевле вариатора и большинства роботов;
  • Увеличение ресурса двигателя – отсутствие рывков при переключении передач и плавное распределение крутящего момента у автоматических коробок передач положительно сказывается и на ресурсе силового агрегата.
Читайте также  Принцип работы СТК

Полноценно все преимущества АКПП можно прочувствовать только при правильном обслуживании. Узнайте, как правильно эксплуатировать авто на гидроавтомате чуть ниже.

Правила эксплуатации гидромеханики: как обслуживать АКПП?

Схема гидромеханики: автоматическая коробка передач в разборе

По факту гидромеханическая коробка передач считается наиболее надежным типом КПП – при бережном обслуживании гидромеханика способна пережить даже МКПП. Однако, чтобы не укоротить ресурс эксплуатации гидромеханической коробки передач все механизмы устройства требуется правильно обслуживать. В частности, желательно придерживаться следующих рекомендаций:

  • Замена рабочей жидкости в АКПП должна производиться не реже чем раз в 40-50 000 км пробега. Менять трансмиссионное масло требуется даже при заявлении производителя авто об не обслуживаемости АКПП. Помните, любой механизм нуждается в смазке и чистке;
  • Проводить замену масла требуется с вытяжным устройством или посредством активного замещения. При обычном сливе жидкости через сливную горловину из АКПП удастся удалить не более половины жидкости от общего объема. Частичная замена масла в некоторых случаях может быть уместна, однако требуется помнить, что со временем рабочая жидкость наполняется продуктами износа КПП и теряет свои эксплуатационные свойства. При большом пробеге гидромеханики частичная замена рабочей жидкости принесет лишь кратковременный эффект;
  • Каждую сотню тысяч пробега необходимо осматривать электроразъемы коробки передач. При наличии следов коррозии разъемы требуется очистить острым предметом, а после – обработать спиртом или ацетоном;
  • Регулярно также требуется проверять сальники КПП и уровень масла. Недостаток рабочей жидкости негативно влияет на ресурс АКПП, а через поврежденные прокладки может засасываться мелкий абразив, в разы ухудшающий качество рабочей жидкости.

Помните! Для автоматической коробки передач качество трансмиссионного масла стоит на первом месте в обслуживании. Не стоит экономить на стоимости масел для АКПП или пренебрегать своевременным ТО. Ремонт автоматической коробки передач будет стоить в разы дороже, нежели ее годовалое обслуживание – не экономьте на рабочей жидкости!

Статья взята с интернет-порталаFIXCAR.ONLINE
Фото — Pixabay

Источник: https://zen.yandex.ru/media/id/5c1a463508e20900ab91041c/ustroistvo-i-princip-raboty-gidromehaniki-akpp-5d233f49c4ae3100ad79b798

Устройство автомобилей

Гидромеханическая трансмиссия принцип работы



В гидродинамической трансмиссии преобразование и передача мощности происходят за счет динамического (скоростного) напора жидкости. Устройством, которое позволяет осуществлять такое преобразование является гидротрансформатор.

Следует отличать гидротрансформатор от гидромуфты – гидротрансформатор способен не только передавать крутящий момент, но и изменять его величину, а гидромуфта лишь передает крутящий момент от ведущего (насосного) колеса ведомому (турбинному) колесу посредством потока жидкости.
Конструктивное отличие гидротрансформатора от гидромуфты заключается в наличии у гидротрансформатора реактора – неподвижного колеса с лопатками, способного изменять направление потока жидкости, передающего крутящий момент от насосного колеса к турбинному.

Гидротрансформатор (рис. 1) состоит из трех колес с радиально расположенными криволинейными лопастями: насосного колеса 4, которое через корпус 2 связано с коленчатым валом 1 двигателя, турбинного колеса 3, соединенного с выходным валом 7, и реактивного колеса 5, установленного на неподвижном пустотелом валу 6. Корпус гидротрансформатора заполнен маловязким маслом.

При вращении коленчатого вала масло, заполнившее промежутки между лопастями насосного колеса, под действием центробежных сил перетекает от внутренних краев лопастей к внешним, и совершая сложное движение, перемещается к турбинному колесу, воздействуя на его лопасти.

Ударяясь о лопасти турбинного колеса, масло отдает часть накопленной кинетической энергии, и поэтому турбинное колесо начинает вращаться в том же направлении, что и насосное.

От турбинного колеса масло поступает к лопастям реакторного колеса, изменяющим направление струй масла, а затем к внутренним краям лопастей насосного колеса.

Таким образом, часть масла циркулирует по замкнутому контуру: насосное колесо – турбинное колесо – реакторное колесо и опять – насосное колесо. При этом угловая скорость турбинного колеса оказывается меньше угловой скорости насосного колеса, поскольку имеет место «проскальзывание» ведущего колеса относительно ведомого, которое тем больше, чем выше нагрузка на выходном валу.
«Проскальзывание» колес гидротрансформатора обусловлено потерями кинетической энергии на трение между слоями масла и при перемещении масла по сложной траектории между колесами.

«Отставание» турбинного колеса от насосного приводит к тому, что поток жидкости начинает отклоняться от круговой траектории после удара о лопатки неподвижного реакторного колеса. При этом направление движения потока масла изменяется, и лопасти турбинного колеса принимают поток жидкости под более крутым углом, т. е.

плечо вращающей силы возрастает, следовательно, возрастает и передаваемый гидротрансформатором крутящий момент. Как только частота вращения насосного и турбинного колес выравниваются, поток жидкости начинает циркулировать по спиральной траектории, и крутящий момент, передаваемый от ведущего колеса к ведомому тоже выравнивается.

Затем опять появляется эффект «проскальзывания» колес и трансформатор начинает работать в режиме увеличения передаваемого крутящего момента.



Очевидно, что увеличение передаточного числа гидротрансформатора напрямую зависит от того, насколько ведомое (насосное) колесо отстает от ведущего (турбинного), т. е. от значения приложенной к выходному валу нагрузки.

Таким образом, гидротрансформатор обладает свойством бесступенчатого и автоматического регулирования крутящего момента на выходном валу в зависимости от приложенной к нему нагрузки. При этом двигатель продолжает работать в заданном режиме, или незначительно от него отклоняясь.

Степень увеличения крутящего момента в гидротрансформаторе называется коэффициентом трансформации, а соотношение угловых скоростей валов насосного и турбинного колес называется передаточным отношением гидротрансформатора.

Между двигателем и трансмиссией в такой передаче нет жесткой связи, а лишь гидравлическая связь, поэтому гидротрансформатор сглаживает возникающие динамические нагрузки, благодаря чему значительно повышаются показатели надежности и долговечности деталей и узлов трансмиссии, двигателя и автомобиля в целом.

Однако у гидротрансформаторов относительно низкий максимальный КПД (0,85..0,9) и незначительный коэффициент трансформации (2…4). Поэтому в некоторых конструкциях с целью резкого повышения КПД предусматривается блокировка гидротрансформатора, при которой насосное и турбинное колесо жестко соединяются друг с другом во время работы.
Кроме того при отклонении нагрузки от номинальной значение КПД гидротрансформатора резко снижается.

Чтобы компенсировать эти недостатки и во время работы использовать зону наибольшего значения КПД, а также повысить передаваемый момент, гидротрансформатор комбинируют с элементами механической трансмиссии – сцеплением и ступенчатой коробкой передач или только с многоступенчатой коробкой.
Дальнейшая передача крутящего момента на ведущие колеса автомобиля осуществляется посредством карданной передачи и ведущими мостами. Такая комбинированная трансмиссия называется гидромеханической.

Автомобили с гидромеханической трансмиссией имеют значительно лучшую проходимость за счет плавного изменения силы тяги ан колесах при движении и, особенно, при трогании с места. Существенным преимуществом автомобилей с гидромеханической трансмиссией является возможность движения с очень малыми скоростями и даже полной остановки машины с работающим двигателем и включенной передачей.

Гидромеханическую трансмиссию применяют в машинах, работающих при значительных и частых изменениях нагрузки, например, городских автобусах. Но сложность конструкции, значительные масса и габариты, а также стоимость таких передач ограничивают применение гидромеханических трансмиссий в конструкциях автомобилей.

***

Вариаторные и гибридные трансмиссии



Олимпиады и тесты

Источник: http://k-a-t.ru/mdk.01.01_transmjssia/transmjssia_5/index.shtml